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Legal Notice
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Abstract

This project had two major data analysis tasks.  The first task was to perform advanced
factor analysis using Positive Matrix Factorization (PMF) on three sets of IMPROVE data, Crater
Lake National Park (CRLA), Lassen Volcano National Park (LAVO), and San Gorgonio National
Wilderness (SAGO).  Two of these IMPROVE sites, CRLA and LAVO, are at relatively high
altitude and the objective is to separate and quantify the influence of Asian dust on the observed
mass concentrations.  Among the sources resolved at the two sites,  six are common.  These six
sources exhibit not only similar chemical compositions, but also similar seasonal variations at both

3sites.  The Asian dust represented by Al, Ca, Fe, NO , S, K, and Ti. with strong seasonal
variation; secondary sulfate with a high concentration of S and strong seasonal variation
correlated with the Asian dust; wood smoke represented by organic carbon (OC), elemental

3;carbon (EC) and K; sea salt with the high concentrations of Na, S and NO  nitrate dominated by

3NO  and motor vehicle with high concentrations of OC, EC and dust elements. A incinerator
source with the presence of Cu and Zn also was resolved from Crater Lake site. Generally, most
of the sources at these two sites showed similar chemical composition profiles and seasonal
variation patterns. The source profile of Asian Dust resolved from this study agreed reasonably
well with the source characteristics found in other Asian Dust studies.

The third site is downwind of Los Angeles (SAGO) and the primary objective is to
determine if gasoline and diesel emissions can be separately identified and quantified using these
chemically speciated data.  The results demonstrate the feasibility of separating diesel/gasoline
emission profiles based on concentration data including OC/EC fractions.   Also in the analysis of
these data, two crustal factors were identified with one being associated with local suspended soil
and the other being associated with transported Asian desert dust.

The second task is to expand the existing capabilities of Aerosol Time-of-Flight Mass
Spectrometry by ascertaining our ability to apply factor analysis to separate diesel from gasoline
motor vehicle emissions and to develop and test calibration models that permits the estimation of
the composition of the bulk ambient aerosol composition from single particle data.  In the study of
data from Fresno, 52 samples were created to build a calibration model.  Compared with an
earlier study (Fergenson, et al., 2001), significant improvements were obtained in this work,
which fully demonstrated the ability of the calibration model based on ART-2a and PLS to
estimate the chemical composition from ATOFMS data and also provided a good base to testing
the transferability of calibration models of neighbor sites.  In addition, some important steps to
building a successful calibration mode, like how to determine the PLS components number, are
presented in detail, and the corresponding guidance is provided.

In order to use single particle data obtained from ATOFMS measurements in PMF
models, it is essential to have effective uncertainty estimates for the numbers of particles in each
identified particle class in each time interval sample.  An approach to developing these
uncertainties is presented.  Data from Fresno has been analyzed by PMF and results are presented. 
However, the interpretation of these results is currently incomplete and will require collaboration
with Prof. Prather of the University of California, San Diego over the next several months to
produce final, interpreted results. 
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INTRODUCTION

Both Federal and State law require California to control concentrations of airborne

particulate matter (aerosols) to protect public health and prevent visibility impairment.  In order to

accomplish this, ARB must identify the sources of ambient aerosols so that appropriate control

2.5programs can be devised.  More specifically with the new PM  standards, long range transport of

particles into California represents a significant contribution to the background particle

concentrations.  These particles can include materials from both natural and anthropogenic

sources including transport across the Pacific Ocean. These source  must be identified so that they

can be properly accounted in setting air quality goals and developing control programs.

Ambient aerosols are complex mixtures of material derived from multiple natural and

anthropogenic sources both near and distant from sampling sites.  Daily and seasonal variations in

source strength and meteorological conditions cause the composition and concentration of

aerosols at any one sampling site to vary over time.  This project proposes to use a newly

developed statistical technique, Positive Matrix Factorization (PMF) to exploit the variation in

long time series of aerosol data to resolve ambient mixtures into their component sources.  As

part of this project, this technology will be transferred to the ARB staff

Finally, ARB along with other agencies have supported the development of important new

monitoring tools such as the Aerosol Time-of-Flight Mass Spectrometer.  This instrument

developed originally at the University of California at Riverside by Prof. Kimberly Prather

provides qualitative characterization of individual particles in real-time.  These very large data

bases require sophisticated data analysis tools to fully utilize information content of this rich data

base.  In a prior ARB-supported project, we showed that these particles could be sorted with a

dynamic classification tool, the Adaptive Resonance Theory Neural Network.  The mass fractions

in the identified classes can be used as quantitative variables.  Thus, there is the potential for the

instrument to provide real-time information on the ambient aerosol composition as well as

providing quantitative information on the relative contributions of sources to the ambient aerosol

mass.  The work under this proposal will continue the development and testing of these data

analysis tools that should enhance the substantial investment that has already made in the

development of this important aerosol monitoring instrument.
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OBJECTIVES

This project will demonstrate the utility of Positive Matrix Factorization (PMF) analyses

to resolve the sources of ambient aerosols.  Two priority areas have been selected for study: the

contribution of Asian sources to “background” aerosols in northern California, and discriminating

between the contributions of gasoline and diesel engines to ambient aerosols sampled in

California’s Central Valley.  In addition to distinct research questions, these experiments will

utilize different aerosol data sources as well.

Routine filter-based data analysis will employ data from the National Park Service /

USEPA IMPROVE aerosol network.  Two experiments are planned.  First, PMF will be applied

to resolve the sources of combustion material accompanying Asian dust arriving at the Crater

Lake National Park (CRLA) and Lassen Volcanic National Park (LAVO) monitoring sites. 

Second, PMF will be applied to IMPROVE data from the San Gorgonio National Wilderness

(SAGO) site in southern California to explore the complex sources influencing that site, with a

special focus on attempting to develop source profile(s) for gasoline-engine particles that are

distinct from profile(s) for diesel engines.

Single-particle data analysis will use data from Aerosol Time of Flight Mass Spectrometry

(ATOFMS) sampling conducted by Prof. Kimberly Prather at Angiola and Fresno to attempt to

distinguish ambient air particles produced by gasoline-powered vehicles from those produced by

diesel vehicles.

The objective of this project is to demonstrate the usefulness of the data analysis tool -

positive matrix factorization (PMF) - to resolve the sources of ambient aerosols. This objective

will be realized through two major data analysis tasks. The first task is to perform PMF on three

sets of Interagency Monitoring of Protected Visual Environments (IMPROVE) data. Two

IMPROVE sites are at high altitude and the objective is to separate and quantify the influence of

Asian dust on observed mass concentrations. The third site is downwind of Los Angeles and the

primary objective is to determine if gasoline and diesel emissions can be separately identified and

quantified using the chemically speciated data.

The second task is to apply factor analysis to Aerosol Time-of-Flight Mass Spectrometry

data and ascertain the ability of this method to separate diesel from gasoline motor vehicle
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emissions. As part of this second task, test calibration models will be developed that permit

estimation of the composition of the bulk ambient aerosol composition from single particle

ATOFMS data.  

ORIGINS OF FINE AEROSOL MASS USING PMF

Sampling and Analyses

The Interagency Monitoring of Protected Visual Environments (IMPROVE) program

(Malm et al., 1994) is a cooperative measurement effort governed by a steering committee

composed of representatives from Federal and regional-state organizations. The IMPROVE

monitoring program was established in 1985 to aid the creation of Federal and State

implementation plans for the protection of visibility in Class I areas as stipulated in the 1977

amendments to the Clean Air Act.  

The Crater Lake (CRLA)(42.89  N,-122.14 W) field site is located in southwestern0 0

Oregon with elevation of 1981m.   The Lassen Volcanic (LAVO)(40.54  N,-121.58 W) field site0 0

is located in northern California with elevation of 1798m.  The main advantages of these sites for

atmospheric sampling are that it is far removed from any major local air pollution sources because

of their high elevation.  They are suitable for evaluating the impacts of Asia dust to the air quality

of North America.  

Samples were also collected at the San Gorgonio Wilderness IMPROVE site (Latitude:

34.1924N, Longitude: 116.9013W, Altitude 1705 m), which is downwind of the Los Angeles

area, an area dominated by mobile source emissions beginning in March 1988.  It is north of the

city of San Bernadino. 

2.5The IMPROVE sampler include: Module A: PM  particles collected on Teflon. These are

2.5analyzed by five methods at for gravimetric mass for PM , hydrogen by particle elastic scattering

(PESA), elements from Na to Mn by particle induced X-ray emission (PIXE), Elements from Fe

2.5to PB by photon-induced x-ray fluorescence (XRF) [Cohen 1999]; Module B:  PM  particles

collected on nylon.  A denuder before the nylon filter removes nitric acid vapors. These are

2.5analyzed by ion chromatography for nitrate, chloride, sulfate and nitrite; Module C: PM

particles collected on quartz. These are analyzed for carbon using the Thermal Optical
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Reflectance (TOR) [Chow et al., 1993].  The duration of aerosol sampling was 24 h, and the

samples were collected on Wednesdays and Saturdays.  After 2000, the IMPROVE program

changed the sampling schedule from two 24-hour samples per week (on Wednesday and

Saturday) to one 24-hour sample every three days.  

Data Analyses

Mass Balance Model

 The fundamental principle of source/receptor relationships is that mass conservation can

be assumed and a mass balance analysis can be used to identify and apportion sources of airborne

particulate matter in the atmosphere.  This methodology has generally been referred to within the

air pollution research community as receptor modeling [Hopke, 1985; 1991].  The approach to

obtaining a data set for receptor modeling is to determine a large number of chemical constituents

such as elemental concentrations in a number of samples.  Alternatively, automated electron

microscopy can be used to characterize the composition and shape of particles in a series of

particle samples.  In either case, a mass balance equation can be written to account for all m

chemical species in the n samples as contributions from p independent sources

(1)

ij ikwhere x  is the ith elemental concentration measured in the jth sample, f  is the gravimetric

kjconcentration (ng mg ) of the ith element in material from the kth source, and g  is the airborne-1

mass concentration (mg m ) of material from the kth source contributing to the jth sample.  -3

There exist a set of natural physical constraints on the system that must be considered in

developing any model for identifying and apportioning the sources of airborne particle mass

[Henry, 1991].  The fundamental, natural physical constraints that must be obeyed are:

1) The original data must be reproduced by the model; the model must explain the
observations.

2) The predicted source compositions must be non-negative; a source cannot have a negative
percentage of an element.
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Figure 1.  Three dimensional plot of
simulated data.

3) The predicted source contributions to the aerosol must all be non-negative; a source
cannot emit negative mass.

4) The sum of the predicted elemental mass contributions for each source must be less than
or equal to total measured mass for each element; the whole is greater than or equal to the
sum of its parts.

When developing and applying these models, it is necessary to keep these constraints in mind in

order to be certain of obtaining physically realistic solutions.

The critical question is then what information is available to solve equation (1).  It is

assumed that the ambient concentrations of a series of chemical species have been measured for a

ijset of particulate matter samples so that the x  values are always known.  If the sources that

contribute to those samples can be identified and their compositional patterns measured, then only

the contributions of the sources to each sample need to be determined (e.g. Kowalczyk et al.,

1982; Chow et al., 1992).  These calculations are generally made using the effective variance least

squares approach incorporated into the EPA’s CMB model.  However, for many locations, the

sources are either unknown or the compositions of the local particulate emissions have not been

measured.  Thus, it is desirable to estimate the number and compositions of the sources as well as

their contributions to the measured PM.  The multivariate data analysis methods that are used to

solve this problem are generally referred to as

factor analysis.  Factor analysis methods (e.g.

Koutrakis and Spengler, 1987; Chueinta et al.,

2000; Song et al., 2001a) do not utilize knowledge

of sources but rely on a large number of

measurements to provide a data set from which the

source information can be derived.  

The factor analysis problem can be

visualized with the following example.  Suppose a

series of samples are taken in the vicinity of a

highway where motor vehicles are using leaded

gasoline and a steel mill making specialty steels. 
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Figure 2.  Plot of the simulated data as
viewed from above relative to the view in
Figure 1.

For these samples, measurements of Pb, Br, and Cr are made.  This set of data can then be plotted

in a three dimensional space as in Figure 1.  A cloud of points can be observed.

However, it is known that there are only

two particle sources.  The problem is then to

determine the true dimensionality of the data and

the relationships among the measured variables. 

That is goal of a factor analysis.  In the case of this

example, the relationships can be observed with a

simple rotation of the axes so that we look down

onto the figure so that the Cr axis sticks out of the

page.  This view is seen in Figure 2.  Now it can be

seen that the data really cluster around a line that

represents the Pb-Br relationship in the particles

emitted by the motor vehicles.  The Cr values are distributed vertically and are independent of the

other two elements.  Factor analysis of this problem would find two sources and provide the

relationship between the lead and bromine.   

Positive Matrix Factorization

Multivariate approaches are based on the idea that the time dependence of a chemical

species at the receptor site will be the same for species from the same source. Chemical species

are measured in a large number of samples gathered at a single receptor site over time.  Species of

similar variability are grouped together in a minimum number of factors that explain the variability

of the data set.  It is assumed that each factor is associated with a source or source type.  Among

the multivariate receptor modeling used for aerosol source identification, positive matrix

factorization (PMF) developed by Paatero and Tapper (1993, 1994) and Paatero (1997) is a

relatively new technique.  PMF has special features of the use of realistic error estimates to weight

the data values and the imposition of non-negativity constraints in the factor computational

process.  PMF have been successfully applied in many atmospheric studies [Juntto and Paatero,

1994; Anttila et al., 1995; Polissar et al.,1996, 1998, 2001; Xie et al., 1999; Paterson et al., 1999;
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Chueinta et al., 2000; Song et al., 2001a; Polissar et al., 2001; Lee et al., 2002; Kim et al.,

2003a, b, 2004; Kim and Hopke, 2004]. 

In this study, PMF was applied to the various IMPROVE data sets.  PMF is a described in

detail by Paatero [1997].  Only a brief description of the technique is given here.  PMF uses a

weighted least-squares fit with the known error estimates of the elements of the data matrix used

to derive the weights.  The factor model (PMF2) can be written as

 (1)

where X is the known n x m matrix of the m measured chemical species in n samples. G is an n x p

matrix of source contributions to the samples (time variations).  F is a p x m matrix of source

compositions (source profiles).  Both G and F are factor matrices to be determined.  E is the 

 residuals matrix, i.e., the difference between the measurement X and the model Y as a function of

factors G and F.

(2)

The "object function," Q, that is to be minimized as a function of G and F is given by

(3)

ijwhere s  is an estimate of the “uncertainty” in the ith variable measured in the jth sample.  The

factor analysis problem is then to minimize Q(E) with respect to G and F with the constraint that

each of the elements of G and F is to be non-negative.  

The solution to the PMF problem depends on estimating uncertainties for each of the data

values used in the PMF analysis.  There are three types of values that are typically available.  Most

ij ijof the data points have values that have been determined, x , and their associated uncertainties, s . 

There are samples in which the particular species cannot be observed because the concentration is

below the method detection limit.  Finally, there are samples for which the values were not

determined.  These latter two types of data are often termed “missing” data.  However, there are

qualitative differences between them.  In the below detection limit samples, the value is known to

be small, but the exact value is not known.  In the case where values could not be determined, the
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value is totally unknown.  Polissar et al. (1998) has suggested an approach for estimating the

concentration values and their associated error estimates including values below detection limits

or missing for IMPROVE data from Alaska and we have use this approach in this study.  

Another important aspect of weighting of data points is the handling of extreme values. 

Environmental data typically shows a positively skewed distribution and often with a heavy tail. 

Thus, there can be extreme values in the distribution as well as true “outliers.”  In either case,

such high values would have significant influence on the solution (commonly referred to as

leverage).  This influence will generally distort the solution and thus, an approach to reduce their

influence can be a useful tool.  Thus, PMF offers a “robust” mode.  The robust factorization based

on the Huber influence function [Huber, 1981] is a technique of iterative reweighing of the

individual data values. The least squares formulation, thus, becomes

 (4)

where 

  (5)

where "  =  the outlier distance and the value of " = 4.0 was chosen.  It is generally advisable to

use the robust mode when analyzing environmental data.  Our experience has generally found that

the robust mode provides the best results for typical particulate composition data.  

2.5With the total PM  mass concentration measured for each sample, multiple linear

regression (MLR) were used to regress the mass concentration against the factor contributions.  

The regression coefficients were then used to scale the values into physically meaningful units.  

Results and Discussion

The discussion of the results will be focused on the two different types of site locations. 

Crater Lake and Lassen are relatively remote from populated areas and the primary purpose for
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examining these sites was to ascertain the effect of Asian dust events at times other than the

March to May period that is normally considered as the interval during which such events occur. 

Prior work [Vancuren and Cahill, 2002] had suggested that there were more frequent impacts of

Asian dust at elevated sites in the western US.  

The analysis of the other site, San Gorgonio, was focused on the separation of gasoline

from diesel exhaust emissions.   Prior work in Seattle [Maykut et al., 2003], Atlanta [Kim et al.,

2004a], Brigantine NJ [Kim and Hopke, 2004a] and Washignton, DC [Kim and Hopke, 2004b]

found that the analysis of IMPROVE data using the individual organic and elemental carbon

thermal fractions separated factors that were assigned to diesel and spark-ignition vehicle

emissions.  San Gorgonio is near San Bernardino and could be expected to be influenced by

motor vehicles to a much greater extent than the other two sites. 

Crater Lake and Lassen Volcano

The results of this work have been published [Liu et al., 2003] and will be summarized in

this report.  The samples were characterized by the concentrations of 33 chemical species as

shown in Table 1.  Table 1 shows geometric means along with geometric standard deviations for

the aerosol species measured at both sites.  The percentage of observations with reported

concentrations  below the detection limit is also shown in Table 1. 

In summer 1992, analysis of IMPROVE filters for elements with atomic weights from Fe

to Pb was changed from PIXE to XRF to decrease their minimum detection limits (MDL).  The

cyclotron time for the PIXE analysis was reduced and MDLs for elements below Fe.  As

mentioned in section 3.2, the detection limit was a very important parameter in application of

PMF.  In order to get consistent result, only the data from July 1 , 1992 to Feb, 2000 wasst

employed for the data analysis in this study.   A total of 731 and 740 samples were obtained and

analyzed for the CRLA data and for the LAVO data, respectively.

A critical step in PMF analysis is the determination of the number of factors. The results of

a PMF analysis are not hierarchical, i.e. a higher dimension solution does not necessarily contain

all the factors of the lower dimensions, because orthogonality is not required.  Thus, is normal

practice to experiment with different numbers of factors and find the optimal one with the most



10

physically meaningful results.  Analysis of the goodness of model fit, Q, as defined in Equation

(3), can help determine the optimal number of factors.  Assuming that reasonable error estimates

of individual data points are available, then fitting each value should add one to the sum and the

theoretical value of Q should be approximately equal to the number of data points in the data set.

However, the resulting solution also has to make physical sense within the system being studied.

The factor numbers from 5 to 9 were tested for both the CRLA and the LAVO data.  The

results from each trial run were examined, e.g., Q values and presented source profiles.  For the

CRLA data, seven factors were resolved with Q value equaling to 21454 which is close to the

data dimension of 24123.  For the LAVO data, six factors were resolved with Q value equaling to

22877 which is also close to the the data dimension of 23680.  The  resolved factors are shown in

Figures 3 and 4 for the CRLA and LAVO sites, respectively.  Accompanying the factors,

individual error estimates were also computed for all of the factor elements.  The time series plots

for the source contributions are shown in Figures 5 and 6 for the data sets in the same order.  The

average mass contributions of each factor to the measured total mass are shown in Figures 7 and

8 for the CRLA and LAVO data, respectively.

2.5Factor F1, on average, contributes 16% and 11% of the PM  mass at CRLA and LAVO

sites, respectively.  This factor represented soil factor with high concentration of Al, Si, Ca, Fe,

3NO , S, K, and Ti.  It represents wind-blown Asian Dust since it occurs most frequently in spring,

between March and May and showing a clearly seasonal cycle.  The dust storms occur in East

Asia, mainly from the Taklamakan, Gobi, and Ordos deserts and the Loess plateau.  Since the

phenomenon of Asian Dust usually occurs with the migratory cyclone, the frequency of the

occurrence of yellow sand largely depends on the number of weather systems passing through the

sources regions from the end of March to the early part of May.  The Asian Dust factor

contributions for these two sites is show with an expanded scale in Figure 9.  It can be seen that

Asian dust is less frequently observed from June to February.  One of the reasons for this appears

to be that cyclones traveling along the polar front contain relatively more abundant moisture than

the ones that form in spring.  For the high mass contribution peak in 1998 (as shown in Figure 9),

in particular, Asian dust was observed all over Korea including Seoul and Anmyon Island from 14

to 22 April.  Husar et al. [2001] reported that in April 1998, several usually intense dust storms
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occurred over the Gobi Desert in Western China and Mongolia.   The storm on April 19, 1998

produced a dust cloud that crossed the Pacific and caused aerosol concentration near the health

standard over much of the west coast of North America.   The high mass contribution peak

resolved from CRLA and LAVO on April 29, 1998 corresponded to the Asian Dust occurrence in

China on April 19.  

Table 1. Geometric Means (GM), Geometric Standard Deviations (GSTD), Percentage of Data
below Detection Limits(BDL) for both sites

CRLA LAVO

)Species       BDL(%) GM(ngm ) GSTD BDL(%) GM(ngm GSTD-3 -3

AL 33.7 10.64 5.54 29.7 15.02 5.87
AS 65.8 0.05 1.85 61.2 0.05 1.95
BR 1.9 0.60 2.29 0.9 0.79 2.21
CA 5.3 13.15 3.17 2.7 14.16 2.74
CL 75 1.25 4.13 84.1 0.85 3.05
CR 66.8 0.34 2.18 71.8 0.31 2.00
CU 26.1 0.23 3.10 26.6 0.39 2.49
FE 0.8 13.79 4.08 0.4 16.07 3.44
H 1.1 85.2 2.27 0.3 103.23 2.16
K 4.5 14.73 3.01 2.3 19.67 2.71

2.5PM  Mass 1.6 2042.3 2.23 0.7 2451.8 2.29
MG 80.5 1.98 2.54 78 1.93 2.74
MN 57.5 0.53 3.00 58.4 0.45 2.47
NA 42.3 14.43 3.52 35.8 17.34 3.72
NI 72.7 0.05 1.79 71.1 0.05 1.78

NO3_ 2.9 49.38 2.83 0.3 66.22 2.99
P 92.8 0.65 1.48 95.0 0.62 1.44

PB 14.6 0.43 2.20 12.6 0.48 2.18
RB 51 0.08 1.52 45.9 0.09 1.58
S 0.7 82.09 2.49 0.1 98.60 2.42

SE 63.9 0.04 1.56 49.7 0.05 1.87
SI 3.7 43.78 3.50 1.9 55.71 3.05
SR 30.9 0.14 1.88 25.3 0.15 1.84
TI 27.6 1.92 3.10 22.8 2.21 3.02
V 63.3 0.41 2.14 59.7 0.40 2.25

ZN 3 1.12 2.92 2.0 0.77 2.38
ZR 81 0.08 1.22 82.3 0.09 1.14

OC1 17.9 48.98 1.76 2.0 53.85 2.08
OC2 2.6 104.44 2.30 0.1 123.02 2.40
OC3 3.3 162.93 2.79 0.1 215.66 2.57
OC4 2.6 94.53 2.77 0.1 121.82 2.54
EC1 2.7 144.30 2.94 0.1 172.89 2.83
EC2 3.1 63.60 2.21 0.8 46.66 1.95
EC3 34 9.84 1.54 14.5 8.84 1.62
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Figure 3.  Source profile resolved from CRLA, OR.
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Figure 4.  Source profile resolved from LAVO, CA.
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Figure 5.  Time series of the source contributions at CRLA, OR.
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Figure 6.  Time series of the source contributions at LAVO, CA.
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Figure 7.  Average source contributions for
each factor at CRLA, OR.

Figure 8.  Average source contributions for
each factor at LAVO, CA.

Figure 9.  Comparison of the time series of Asian Dust observations at Crater Lake (top)
and Lassen Volcano (bottom).

The chemical composition of F1 compared fairly well with Asian Dust Material (ADM)

[Nishikawa et al., 2000] except for S, Ca and Si at both sites.  The comparison results are shown
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in Figure 10 and Table 2 for both sites. Only 20 elements were compared between F1 and ADM

because only these elements were determined in the Asian Dust Material.  The biggest difference

between the composition of  factor F1 and the reference material is the sulfur concentration.  The

sulfur concentration in factor F1 is more than six to seven times of that in the reference materials

at CRLA and LAVO, respectively.  This high value can be explained by accumulation of sulfur

during the transportation of Asian Dust through industrial areas such as the eastern part of China.  

The Ca and Si concentration in factor F1 is much less than that of in the reference material.  The

reduction in Ca and Si in the downwind samples is consistent with the modeling and aerosol

analysis reported by Carmichael and coworkers for the PEM-West Asian plume field program

[Chen et al, 1997, Xiao et al., 1997].  Additionally,  the particle size distribution of the ADM

includes particles up to 40 µm while the sampling process collects particles under 2.5 :m.  There

could be significant changes in composition for the finer sized particles.
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Figure 10.  Factor F1 species concentrations resolved in this work compared with Asian
Dust Material (ADM) [Masataka et al., 2000]).
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Table 2.  Factor F1composition concentration resolved from this work compared with the Asian

Dust Material (ADM) [Nishikawa et al., 2000]

Element CRLA F1 

(ng/ng)

LAVOF1

(ng/ng)

ADM 

(ng/ng)

CRLA F1 

/ADM

LAVO F1 

/ADM
Al 0.060 ± 0.00150 0.107 ± 0.00100 0.060 1.00 1.78
As 0.00001 ± 0.00000 0.00001 ± 0.00000 0.00002 0.72 0.68
Br 0.00001 ± 0.00000 0.00001 ± 0.00000 0.00001 0.83 1.35
Ca 0.034 ± 0.00060 0.029 ± 0.00060 0.076 0.45 0.39
Cr 0.00003 ± 0.00000 0.00004 ± 0.00000 0.00005 0.65 0.78
Cu 0.00002 ± 0.00000 N/A ± 0.00003 0.67 N/A
Fe 0.036 ± 0.00090 0.053 ± 0.00050 0.029 1.27 1.80
K 0.015 ± 0.00050 0.021 ± 0.00060 0.021 0.74 0.98

Mn 0.00036 ± 0.00003 0.00043 ± 0.00003 0.00053 0.68 0.81
Ni 0.00002 ± 0.00000 0.00003 ± 0.00000 0.00004 0.55 0.66
P 0.00026 ± 0.00003 0.00029 ± 0.00002 0.00041 0.64 0.71
Pb 0.00001 ± 0.00000 0.00002 ± 0.00000 0.00002 0.67 0.83
Rb 0.00006 ± 0.00001 0.00007 ± 0.00001 0.00013 0.50 0.55
S 0.0032 ± 0.00030 0.0036 ± 0.00030 0.0005 6.59 7.41
Si 0.136 ± 0.00200 0.157 ± 0.00210 0.290 0.47 0.53
Sr 0.00021 ± 0.00001 0.00021 ± 0.00001 0.00034 0.62 0.60
Ti 0.0037 ± 0.00020 0.0042 ± 0.00020 0.0031 1.20 1.35
V 0.00004 ± 0.00000 0.00004 ± 0.00000 0.00006 0.66 0.72
Zn 0.00004 ± 0.00000 0.00006 ± 0.00000 0.00007 0.64 0.79
Zr 0.00006 ± 0.00001 0.00006 ± 0.00001 0.00017 0.35 0.35

Average 1.00 1.10

Factor F2 represents the secondary sulfate profile with a high concentration of sulfur. This

2.5factor, on average, contributes 15% and 26% of the PM  mass in CRLA and LAVO,

respectively.  This factor shows a strong seasonal variation trend corresponding to the Asian Dust

with high concentration in summer time. This factor may represent the sulfur emission from the

3 3industrial area as well as  marine sources. Dimethylsulphide (DMS, CH SCH ) emitted from

marine phytoplankton, globally contributes to 30% of the total emission of sulphur to the

atmosphere [Andreae, 1990; Spiro et al., 1992; Bates et al., 1992; Berresheim et al.,1995].  In

remote oceanic areas near the CRLA and LAVO, DMS is considered to be the main source of

2climatically active sulphate aerosols [Charlson et al., 1987].  Sulfate can also be formed from SO

emitted from the industrial areas across eastern Asia.  The big difference of mass contribution
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between these two sites can be explained by the location of these two sites.  The LAVO is located

in northern California while the CRLA is located in southwestern Oregon.  The industrial areas

surrounding San Francisco and Sacramento could contribute the additional sulfur to LAVO when

compared to CRLA.

2.5Factor F3 is the highest contributor of the PM  mass, on average, contributes about 46%

2.5and 48% to the PM  mass at CRLA and LAVO, respectively.  It is characterized by OC, EC and

K.  It is connected with local residential wood burning and occasional forest fire impacts.  Figure

5 shows that there were significant fires in the summers of 1994, 1996, and 1999 affecting CRLA. 

At LAVO, there was a major event that appears in 1999 (Figure 6).  A limited number of very

high values raised the average contributions to the wood combustion factor.

2.5Factor F4 is relative minor, on average, contributes 2% and 6% to the PM  mass of

3CRLA and LAVO, respectively.  It is the dominant source of secondary NO .  Nitrate is formed in

the atmosphere predominantly through oxidation of NOx. The suspected origin of this source is

3(g) 3the mobile emissions. The particle partitioning of total nitrate (HNO +NO ) depends on ambient-

temperature and relative humidity [Seinfeld and Pandis, 1998]. 

2.5Factor F5, on average, contributes 4% and 5% to the total PM  mass for CRLA and

3LAVO, respectively.  It contains high concentrations of Na, S and NO .  The Cl concentration is

3 2 4very low which may be due to the conversion from NaCl to NaNO  and Na SO .  The temporal

variation does not exhibit strong seasonal pattern.

Factor F6, on average, contributes 12% and 1% to the total PM2.5 mass for CRLA and

LAVO, respectively. It was characterized by high OC and EC concentrations, accompanied by

some soil components (Al, Fe, Si, Ca, Mg) entrained by passing traffic. The temporal variations

shown seasonable variations with high impacts during summer time when the tourist most likely

visited these two sites.

2.5Factor F7 resolved from CRLA is relatively minor contributor of the PM  mass which on

2.5average, contributes 3% of the PM  mass.  This profile suggests a source rich in Zn, Cu, Fe with

high concentration of EC and OC.  This factor could be caused by industrial emissions, such as

iron/copper smelters. Only sporadic high mass contribution events occurred from this source

during these years.
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2.5Through the regression of the measured total PM  mass concentration against the factor

2.5 scores, on average, 98% of the PM mass can be explained by the factors in both sites. The

results also showed that PMF was a powerful and useful factor analysis method to extract

emission sources out of ambient concentration data.

San Gorgonio

The results of the analysis of the San Gorgonio National Wilderness have been presented

in a manuscript that is currently under review at Atmospheric Environment.  We are currently

waiting to receive the reviews.  Seven sources were resolved for the ambient aerosols at the San

Gorgonio IMPROVE site.  They were 1: soil, 2: sea salt, 3: diesel emission, 4: gasoline emission,

5: secondary sulfate with secondary organic, 6: secondary nitrate, and 7: Asian dust.  Multiple

2.5linear regression (MLR) was applied to regress the total PM  mass against the estimated source

contributions [Hopke et al., 1980].  The regression coefficients were used to scale the source

profiles and contributions to make them more physically meaningful.  The corresponding source

profiles and contributions are shown in Figures 11 and 12, respectively.  An interesting feature of

this solution is the existence of two sources with different OC/EC fractions that have been

tentatively identified as diesel and spark ignition vehicle.  The separation of diesel and gasoline

emission will be discussed first and then the description of other sources will be given.

Diesel oil and gasoline are composed of many kinds of compounds, and their emissions are

also a complex mixture of compounds.  To provide a characterization of gasoline and diesel

vehicle emissions, Chow et al. [1993] and Watson et al. [1994] applied thermal/optical reflectance

(TOR) method to the carbon analysis to the diesel/gasoline emission obtained in dynamometer

tests. The same seven carbon fractions (four OCs and three ECs) were detected as have been

measured for the quartz filter in module of the IMPROVE sampling system. Through the results

of their experiments [Chow et al. 1993 and Watson et al. 1994], the similarities and differences in

the profiles of diesel and gasoline emissions with respect to the organic and elemental carbon

fractions are presented below.

 The diesel fueled OC1 abundance is significantly higher than the gasoline fueled OC1

abundance.  The EC1 fraction in gasoline emission is generally more abundant than that in diesel
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emission.  The EC2 fraction in the diesel emission is significantly higher than that in the gasoline

emission.  There is very little EC3 in either diesel emission or gasoline emission.

It can be seen from Figure 11 that a source attributed to diesel emissions was separated

from the gasoline emission source in this study.  Source 3 with high concentrations of OC1 and

EC2 was assigned to be diesel emission while source 4 with high OC3 and EC1 represents

gasoline emission. Some Fe, Si, and other elements were also included in the source profiles

possibly because gasoline/diesel emission might be mixed with soil dust constituents during

transportation or these may be elements in fuel additives [Schauer et al., 2002].  To highlight

these source profiles in comparison with direct measurements, the profiles of diesel and gasoline

with relative concentrations of OCs and ECs are shown in Figure 13 along with the respective

profiles measured in dynamometer studies by Watson et al. [1994].  The results from San Gorgoio

are in very good agreement with those of Watson et al. [1994], especially with respect to the key

fractions (i.e., OC1, EC2 for diesel, and EC1 for gasoline).  

In addition to diesel and gasoline emissions, other five sources were identified in this

study. They are soil, aged sea salt, secondary sulfate with secondary organics, secondary nitrate,

and desert dust, respectively.  Source 1 represents soil with high concentrations of of Al, Si, Ca,

and Fe, and contributes 8.2% to the total PM 2.5 mass in this site. The ratio of Al to Si in this

source is 0.89 much higher than the typical ratio observed in soils, 0.293 [Mason, 1966].  This

source appears to include some Al that should have been assigned to the other sources.  

3Source 2 appears to be aged sea salt with high concentrations of Na, NO , and S. This

source contributes 7.3% to the total PM 2.5 mass. The low concentration of chloride in this

2 4 3 source may be due to the conversion from NaCl to Na SO  or NaNO during transportation [Liu

et. al., 2003].
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Figure 11.  Resolved source profiles based on the data from San Gorgonio, CA
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Figure 12.   Time series of the source contributions of the resolved factors for San
Gorgonio, CA.
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Source 6 shows secondary nitrate

with high concentration of nitrate and

contributes 39.3% to the total PM 2.5 mass.

Nitrate is formed in the atmosphere

predominantly through oxidation of NOx

and the suspected origin of this source is the

mobile emissions. This source shows a

seasonal trend with high contributions in

winter because low temperature shifts the

3 3equilibrium system of NO   and HNO-

toward the particle phase, increasing the

4 3mass of NH NO  [Seinfeld and Pandis,

1998].  However, the temporal contribution

plot for this source also shows some peaks in the summer. This result reflects the temporal

3variation of measured NO  concentration. Actually, it has been observed that some high peaks of

nitrate concentration occurred in summer time [Liu, et al., 2000]. 

2.5Source 7 shows high concentration of Si and contributes 5.9% to the total PM  mass.

The Al concentration is very low in this source and represents the rotational problem noted for

source 1.  This source is assigned as desert dust. It can be seen from the temporal contribution

plot of this source that almost every spring (from March to May) shows a high peak, especially in

the spring of 2001.  Dust storms occur almost every spring in the deserts of Western China, such

as Taklamakan, Gobi and Ordos Deserts. Husar et al. [2001] reported that in April 1998, several

intense dust storms occurred over the Gobi Desert in Western China and Mongolia.  In particular,

the storm on April 19, 1998 produced a dust cloud that crossed the Pacific and reached much of

the west coast of North America. Thus, the peak of April 29, 1998 in the contribution plot of this

source may correspond to this sand storm. Recently, the studies of the aerosol of the Crater Lake

and Lassen Volcanic National Parks have reported the similar result and the corresponding date

was also April 29, 1998 [Liu et al., 2003].  They suggested that such events may be observed

more frequently at high altitude sites such as San Gorgonio.

Figure 13.  Comparison of diesel (top) and gasoline
(bottom) carbon thermal fractions extracted from
the San Gorgonio site data and those reported by
Watson et al. (1994).
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In addition, the peak concentration on April 13, 2001 in the contribution plot may also

correspond to a major sand storm occurred in China.  In order to explore this hypothesis, air

parcel back trajectories with three different heights (1, 100, and 200 meters above model ground

level) and two different end times (16:00 pm and 23:00 pm UTC) on April 13, 2001 were

calculated using the NOAA HYSPLIT model [http://www.arl.noaa.gov/ready/hysplit4.html,

Draxler and Hess, 1998].  All the trajectories were across the northern Pacific Ocean, which

suggests eastern Asia as the source area (Figure 14).  This source profile also shows some S and

OC probably because the Asian dust was mixed with anthropogenic air pollutants during the

transport across China.  Sources 1 and 7 both show high concentration of Si, but it can be seen

from Figure 12 that their temporal contribution plots are obviously different, suggesting the

concept of two different sources called “local soil” and “Asian dust”. As for the low concentration

of Al in source 7, the possible reasons are 1) Al might be incorporated into other sources that

represent stronger sources of Al, and 2) more than 1/3 of the Al concentration measurements

were below the detection limit, which is adverse to the analysis. 

Figure 14.  Calculated backward air parcel trajectory plots for three different heights and
two different times on April 13, 2001.
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Another test of the effectiveness of the

PMF analysis is the comparison of the predicted

PM mass vs. the measured PM mass.  The

predicted PM mass of each sample was obtained

from the sum of scaled source contribution

values.  It can be seen from Figure 15 that there

is a high correlation between the predicted PM

mass and the observed values with a squared

correlation coefficient R  of 0.86.  2

Figure 16 shows that the average

2.5contributions of the sources to total PM  mass. 

The largest sources are secondary sulfate and nitrate.  These secondary factors also include

carbonaceous species so that the mass contributions are greater than just the mass of ammonium

sulfate or ammonium nitrate.  The contributions of diesel and gasoline emissions are 8.1% and

2.2% respectively, so they are not large contributors of the aerosol particles in the San Gorgonio

site.  However, the proportions are similar to those

observed in earlier studies of the Los Angeles basin

[Schauer et al., 1996].  Again at this elevated site,

there is an apparent impact of Asian dust events as

well as aerosolization of local soils.  

A test of the effectiveness of the PMF

analysis is the comparison of the predicted PM

mass vs. the measured PM mass.  The predicted

PM mass of each sample was obtained from the

sum of scaled source contribution values.  It can be

seen from Figure 14 that there is a high correlation

between the predicted PM mass and the observed

Figure 15.  Comparison of the predicted total

2.5PM  mass from the PMF analysis with the

2.5measured PM  mass concentrations

Figure 16.  Relative contributions of the

2.5identified sources to the PM  mass
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values with a squared correlation coefficient R  of 0.86.  The slope is 1.07 ± 0.11 and an intercept2

of 0.85 ± 0.01 µg m .   -3

PREDICTING BULK AMBIENT AEROSOL COMPOSITIONS FROM ATOFMS DATA

Introduction

Motor vehicle exhaust, road dust, industrial emissions, biogenic emissions and other

pollution sources make the exposure to ambient aerosols unavoidable, so more and more, new

measurement techniques and data analysis tools have been applied into the studies on ambient

particles (Hughes et al., 1999; Song et al., 2001b).  First developed in 1994, aerosol time of flight

mass spectrometry (ATOFMS) represents a particle analysis technique with the ability to provide

the size and composition of individual aerosol particles in real time (Prather, et al., 1994).  This

technique provides information to understand the size and composition distribution of particles

(Hughes, et al., 1999).  However, one of the criticisms of ATOFMS is that it cannot provide

quantitative estimation of the bulk chemical composition of particles.  Actually bulk chemical

compositions are very helpful for studying the relationship between ambient aerosols and human

diseases and designing pollution control strategies, so solving this estimation problem will make

more uses of the advantages of ATOFMS and extend the application fields of ATOFMS.  

Fergenson et al. (2001) performed the initial study on calibration models to estimate the ambient

aerosol chemical composition from single particle data.  However, because of the limited samples

for that research (only 12 samples), the ability of the multivariate calibration model to predict bulk

chemical compositions was not demonstrated sufficiently and there were salient errors between

the predicted and measured concentrations, so the goals of this work are: 1) fully prove the

feasibility and predicting effect of the multivariate calibration model based on adaptive resonance

theory (ART) neural networks and partial least square regression (PLSR) on estimating bulk

aerosol chemical composition from ATOFMS data, 2) make detailed study on some key steps to

building a successful calibration model, and 3) make preparation for testing the transferability of

calibration models and thereby determine if the calibration models of one location can be applied

to data from another location.
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Method Description

The data analysis consists of two major parts.  First the individual particles need to be

classified based on their individual mass spectra.  The mass of particles in each identified class

then become part of the input into the multivariate calibration model to permit the prediction of

bulk aerosol compositions from new single particle data.  These methods have been described in

detail elsewhere (Song et al., 1999; Fergenson et al., 2001) and only a brief introduction to these

methods are presented in the subsequent sections.

Description of ART-2a 

With the developments of single particle mass spectrometer, various cluster analysis

methods, typically ART-2a (a kind of ART networks), have been applied into the on-line particle

composition analysis.  There are a number of reports about the application of ART-2a into the

classification of single particle mass spectrometry data (Song et al., 1999; Phares et al., 2001).  In

the classification of ATOFMS data, the input to the ART-2a algorithm are the vectors of the areas

for each mass-to-charge ratios of all of the peaks in each particle and the outputs are the index of

the class each particle belongs to.  Compared with most clustering methods, the significant

advantage of ART is the ability to add a new cluster without disturbing any existing clusters, so it

is very useful for the online particle analysis.   

Training for the ART-2a algorithm is briefly described as below.  The details can be found

in the literature (Carpenter et al., 1991; Xie, et al., 1994).

1. Randomly select an input vector and scale it into unit length.

i2. Contrast enhancement: transfer all elements of p  through a nonlinear transfer function.

where 2 is a threshold value.  In this study, 2 is 0.005. 

3. Rescale  to unit vector .
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4. Evaluate the competitions among all existing l output neurons, and select the winner

neuron.  The competition denotes the resonance between the input vector and the existing

clusters and is measured by their dot product.

vig5. If the resonance of the winner neuron is larger than the vigilance limit, D , that is

vigdetermined before training (in this study, D  is set as 0.6), modify the cluster vector of the

winner neuron toward the input vector according to the following procedure; 

where 0 is learning rate.  In this study, 0 is 0.1.  Otherwise, create a new cluster as below.

Repeat the above steps until the change between the cluster vectors of two consecutive

cycles is sufficiently small or the number of repetitions reaches the pre-defined number.  Finally,

the assignments to clusters obtained from the ART-2a analysis are then used to estimate the mass

fractions of all of the classes during each sampling period.  The detailed procedure will be shown

in next section.

Description of PLSR 

PLSR is a recently developed generalization of multiple linear regression (MLR).  The

significant advantage of PLSR over traditional MLR is that PLSR can analyze strongly collinear
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and noisy data, and also simultaneously model a number of response/dependent variables (Wold,

et al., 2001).  A linear regression model can be written as

(6)

where B are the regression coefficients.  In PLSR, X can be transformed into

(7)

where T is the matrix of PLS components and C is the loading matrix.  Let . Then

the PLS transformation is given by

(8)

Thus, equation (6) can be re-written as .  Let . 

Then equation (6) can be expressed as

(9)

newLet  be the estimation of 7., Thus, the predictor for new input, X , can be represented by

.  The detailed procedure can be found in Hoskuldsson (1988).   In this study,

X and Y denote mass fraction of each class and species concentrations respectively.

Data Treatment and Analysis 

In this study, the ATOFMS data were collected in Fresno, CA.  The sampling period was

from Dec. 2000 to Feb. 3, 2001.  Both positive and negative ions were measured in the

ATOFMS, so the range of mass-to-charge (m/z) for this study was set to [-350, +350].  This

means the input of ART-2a is a 700 dimensional vector. The bulk aerosol species concentrations

were measured as part of the California Regional Particulate Air Quality Study (CRPAQS).  The

California Regional PM10/PM2.5 Air Quality Study is a comprehensive public/private sector

collaborative program with two main goals: 1) to provide an improved understanding of

particulate matter and visibility in central California, and 2) to provide decision-makers with the

tools needed to identify equitable and efficient control methods (CRPAQS, 2003).   The species

concentration data of PM2.5 for the Fresno site were collected from Dec. 15, 200 to Feb. 3,
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2001.  Only 11 days (Dec. 15, 16, 17, 18, 26, 27 and 28, Jan. 31, and Feb. 1, 2, and 3) contained

both ATOFMS data and species concentration data, and the concentration data of each day were

collected in 5 time intervals 0:00 to 5:00, 5:00 to 10:00, 10:00 to 13:00, 13:00 to 16:00 and

16:00 to 24:00.  So the total number of the time periods for the calibration model was 11*5=55. 

The total number of measured particles in these 55 time periods was 249, 674.  

The problem is how to classify such a large number of particles with ART-2a networks. 

In Fergenson et al. [2001], a total of 12, 479 particles were grouped into 12 samples. Each

sample was classified individually by ART-2a, but the weight matrix (cluster vectors) was

preserved from one analysis to the next.  Any particles that did not fit into the existing classes

nucleated their own new classes.  The feature of ART-2a network that ART networks can create

new classes without disturbing the existing classes permits this procedure to function, but in term

of system completeness, it would be better to classify the particles in one analysis.  Thus, in this

study, the 249, 674 particles were classified at the same time.  A total of 1325 classes were

created.   However, most of 1325 classes only contained a very few particles.   Therefore, only

117 classes were retained for further analysis after the following screening.  The particles of the

selected 117 classes accounted for 95% of total particle mass.  Each of the remaining classes

accounted for less than 1% of total particle mass.  

The classification results were used to estimate the mass fraction of each class in each time

period.  There are two corrections that need to be made during the mass fraction calculation.  The

first is time scaling.  Because the length of the sampling intervals varied, the sampling periods

were scaled to give an estimate of the actual number of particles that would have been acquired in

the full time period.  The other is the inlet transmission efficiency.  The ATOFMS instruments do

not detect particles of all aerodynamic diameters equally.  Larger particles are detected with a

higher efficiency than smaller particles, so a scaling equation was applied to relate the particle

detection efficiency to the aerodynamic diameter of a particle (Fergenson et al., 2001).  The

detection efficiency as a function of particle size can be expressed as

(10)

where N is the number of particles in a given volume of air per particle observed by ATOFMS in

athat volume, D  is the aerodynamic diameter in micrometer of the particle, and " and $ are
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parameters that are determined through calibration measurements.  They were set as 4999 and

–3.236, respectively [Allen, et al, 2000].  The physical diameter for calculating the particle mass

was estimated from the aerodynamic diameter by assuming the spherical particle with a density of

1.3 g.cm  [Allen, et al, 2000].  In addition, in order to ensure the statistical reliability of the-3

clustering results among 55 time periods, those that contained less than 1000 particles were

excluded from analysis. Thus, 52 time periods were retained for analysis, i.e., 52 mass fraction

vectors each of which was of dimension 117, were created to build the calibration model.

In the species concentration data, the species whose missing or below detection limit

measurements were more than one third of the total measurements were excluded from the

3 3 4analysis.  Ultimately, 35 species (NH , Cl ,  NO , SO , NH4, Na(a) (a: soluble), K(a) (a: soluble),-

OC1 (OC: organic carbon), OC2, OC3, OC4, OP (organic pyrolized carbon), OC (total organic

carbon), EC1 (EC: element carbon), EC2, EC, TC (total carbon), Na, Mg, Al, Si, S, Cl, K, Ca,

Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb) each of which had 52 measurements were retained to

build the calibration model.  Thus, both independent and dependent variables for PLS calibration

model were available.  

Initial Calibration Model

In PLS calibration model, how to determine the number of PLS components is one of the

keys to the success.  In order to avoid the over-fitting, cross-validation was applied in this study

to test the predictive significance of each PLS component.  “Leave one out” strategy was used for

cross-validation, so 52 runs were executed for each candidate number of PLS components.  The

predictive error of sum of squares (PRESS) was used as the criterion of PLS model in this study,

and could be expressed as

(11)

ijwhere y  is the concentration of species j in sample i (i.e., the sample that is left out for testing in

ij ijthe ith run), and ŷ  is the prediction of y .  In this study, the independent and dependent variables
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Figure 17.  The PRESS value plotted as a
function of the number of PLS components.

were scaled and centered to make their distribution more symmetrical.  Such scaling helps to

ensure that one variable does not overwhelm other variables. 

Different numbers of PLS components

produce different PRESS values as shown in Figure

17.  First, PRESS decreased and then stayed

relatively flat, but then increased quickly after the

number of PLS components reached 15.  This rise is

because noise began to be included into the model

when extra PLS components were added.  This

result is called “over-fitting”, which could create a

well-fitted model with little or no predictive ability. 

Thus, the proper PLS components number should lie in the relatively flat range.  In this case, the

PLS number was selected as 6, since it produced the smallest PRESS.  

Figure 18.  Average predicted concentration vs. average measured
concentration for each species.
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The main results of 6 PLS components are shown in Figures 18, 19, 20, and 21, and

Tables 3 and 4.  Figure 18 shows that the average of the predicted concentrations for each

species, i.e., , almost exactly equaled to the average of the measured

concentrations, i.e., .  Let , then REA was

only 3.4%.   Here, “ ” and “ ”denote the average over “i: sample” and “j: species”. 

In fact,  and  provide representations of the distributions of the

measurements and predictions, respectively.  Thus,  Figure 18 shows the predictive power of the

PLS calibration model from this aspect.

In this initial study, there were 52 samples, but there were some missing and below

detection limit values in the species concentration data, so 11 samples (none of which contained

missing or below detection limit values) were used as typical examples to test the prediction effect

of PLS calibration model on individual sample.  The corresponding results were shown in Figures

19 to 21.  It can be seen that almost every black circle (denoting measurement) was covered by or

overlapped a white circle (denoting predicted value).  Compared with Figures 2 to 5 of the

previous study (Fergenson et al., 2001), the prediction effect on individual sample were

substantially improved in this study.  There is one extremely large error between the predicted and

measured concentration of OP in sample 32.   A reason for this large discrepancy may be the very

low measured concentration for OP in this sample.  The average concentration of OP was 1.349

:g/m  while the concentration of sample 32 was only 0.014 :g/m .  Thus, this measurement could3 3

be considered as an outlier.
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Figure 19.  Predicted concentration vs. measured concentration for each
species of individual sample (a).  The number at right upper corner denotes
the sample index.
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Figure 20.  Predicted concentration vs. measured concentration for each
species of individual sample (b). The number at right upper corner denotes
the sample index.

Table 3.   The average of the relative errors between the predicted and measured
concentrations of 11 samples.

3Species TC OC NH Rb Ni Se

REj 19.6% 18.4% 13.7% 230.5% 124.5% 79.5%
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Figure 21.  Predicted concentration vs. measured concentration for
each species of individual sample (c). The number at right upper
corner denotes the sample index

Besides checking the prediction effect on the average concentration, relative error (RE) of

each predicted concentration was also taken into account.  The corresponding criterion was

defined as , i.e. the average value of the relative errors of the

predicted concentrations for species j.  The variables for PLS model were scaled and centered in 

this study [Wold et al., 2001], but a problem similar to that seen in Fergenson et al. [2001]

occurred.   The problem is the species with larger quantities were fit much better than those with

jsmaller values.  Table 4 showed the RE  values of six species.  TC (total carbon), OC (organic

3carbon), and NH  were the 3 species with the highest average measured concentrations, while Rb,

Ni, and Se were the 3 species with the lowest values.  Eleven samples for the Figures 19-21 were

jagain used in this comparison.  It could be seen from Table 4 that the RE  values of the smallest 3

species were much larger than those of the largest 3 species. 
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Figure 22.  Average predicted concentration vs. average measured value
for each species.

One possible reason was that those species in the larger quantities exerted the greater

influence on the ART-2a analysis, ensuring that the identified classes would have a greater

dependence on their concentrations [Fergenson, et al., 2001].  The parameters for calculating the

detection efficiency and the estimated physical density of particle may also be reasons for the

prediction errors of the whole system.  

Another criterion for testing prediction ability is the correlation coefficient R  between the2

predicted and measured values.  Table 4 presents the values for this study and the previous study

[Fergenson et al., 2001].  R  (F) was the result of Fergenson et al. [2001], and R  (1820) and R2 2 2

(385) corresponded to all the measurements (52*35=1820) and the measurements of 11 normal

samples (11*35=385), respectively.  Both R  (1820) and R  (385) were better than that of the2 2

previous study, in agreement with the better prediction results of the calibration model in this



40

study.  However, R  (385) was better than R  (1820).  This proved the noise resisting ability of2 2

PLS model, because the prediction effect on the normal samples was not disturbed by the samples

that contained missing and below detection limit values.   

Table 4.  The correlation coefficient of the predicted and measured concentrations.

R  (F) R  (1820) R  (385)2 2 2

0.83 0.87 0.9

These results suggest that the single particle data can provide good estimates of bulk

aerosol composition.   There are additional studies that need to be made.  In the current study, all

but one of the samples are used to develop a calibration model.  We will explore the size of the

calibration data set necessary to produce adequate calibration models. 

Realistic Calibration Model

The model presented above worked well, but it does not make sense to use all but one

sample to predict the remaining sample.  To be an effective method, it has to be possible to

develop an effective calibration model from an appropriate subset of the available data.  Thus, a

second study has been made.  In order to test the prediction ability of PLS calibration model, 20

samples were randomly selected from the 52 samples to build the model and the remaining 32

samples were for testing.  

Different numbers of PLS components produced different PRESS values as shown in

Figure 22.  First, PRESS decreased and then stayed relatively flat, but finally increased quickly

with the increasing on PLS components number.  This rise is because noise began to be included

into the model when extra PLS components were added into model.  This is called “over-fitting”,

which could create a well-fitting model with little or no predictive ability.  Thus, the proper PLS

components number should lie in the relatively flat range.  In this study, the PLS components 

numbers for 3 cases were set as 4, 3 and 5 respectively, since they produced the smallest PRESS.  
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The main results of the three cases

with the proper PLS components numbers

are shown in Figure 23 and Tables 5 and 6. 

Figure 23 showed that the average of the

predicted concentrations for each species,

i.e., , almost exactly

equaled to the average of the measured

concentrations, i.e., .  

Here, “  ” denotes the average over

“i: sample”.  In fact,  and

provide a representation of the

distributions of the measurements and

predictions, respectively, so Figure 23

showed the predictive power of the PLS

calibration model from this aspect. 

Among the 52 samples, 11 samples did not contain any  missing and below detection limit

values in the species concentration data (they were called “normal samples set”), so in the testing

samples of each of 3 cases, those belonging to the normal samples set were selected as typical

examples to discuss the prediction effect of PLS calibration model on individual sample.  In each

case here, there is very good agreement between the predicted and measured values.  Compared

with Figures 2 to 5 of the previous study [Fergenson, 2001], the prediction effect on individual

sample was substantially improved in this study.  There are extremely large errors between the

predicted and measured concentration for OP in one particular sample.   This sample has a

Figure 23.  PRESS vs. PLS components number
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measured OP concentration of only 0.0143 :g/m .  The average OP concentration of the data set3

was 1.349 :g/m , and this measurement can be considered as an outlier.3

Table 5. The average of the relative errors between the predicted and measured concentrations

of testing samples.

3Species TC OC NH Rb Ni Se

Case 1 23.0% 22.0% 22.3% 161.5% 63.6% 98.1%

Case 2 15.7% 16.0% 20.1% 101.9% 128.8% 107.3%

Case 3 24.2% 23.7% 29..5% 316.9% 124.1% 107.2%

Table 6.  The correlation coefficient of the  predicted and measured concentrations.

Items R (F) R (TA) R (TN)2 2 2

Case 1

0.83

0.838 0.874

Case 2 0.807 0.842

Case 3 0.8610 0.9437

Besides checking the prediction effect on the average concentration, relative error (RE) of

each predicted concentration was also taken into account.  The corresponding criterion was

defined as  , i.e. the average value of the relative errors of the

predicted concentrations for species j.  The variables for PLS model were scaled and centered in

this study, which could ensure the PLS model effect in some extent [Wold et al., 2001], but a

problem similar to that seen in Fergenson et al. [2001] occurred.  The problem is the species with

jlarger quantities were fit much better than those with smaller quantities.  Table 5 showed the RE

3values of six species of 3 cases.  TC (total carbon), OC (total organic carbon), and NH  were the

3 species with highest average measured concentrations, while Rb, Ni, and Se were the 3 species
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jwith lowest values.  It can be seen in Table 5 that the RE  values of the smallest 3 species were

much larger than those of the largest 3 species.  

One possible reason was that those species in the larger quantities exerted the greater

influence on the ART-2a analysis, ensuring that the identified classes would depend on their

concentrations [Fergenson, et al., 2001].  The parameters for calculating the detection efficiency

and the estimated physical density of particle were also the reasons for the prediction errors of the

whole system.  

Another criterion for testing prediction ability is the correlation coefficient R  between the2

predicted and measured values.  Table 6 showed the values of this study and the previous study

[Fergenson, 2001].  R (F) was the result of Fergenson et al. [2001], and R (TA) and R (TN)2 2 2

corresponded to all the testing samples in each case and those belonging to the normal samples

set, respectively.  In the three cases, the numbers of the measurements for R (TA) were all 2

32*35=1120, and those for R (TN) were 8*35=280, 8*35=280, and 7*35=245, respectively.  All2

the R  values but the R (TA) for case 2 are better than that of the previous study, in agreement2 2

with the better prediction results of the calibration model in this study.  Moreover, all the R (TN)2

values are better than R (TA) values.  This proved the noise resistance of the PLS model because2

the prediction effect on the normal samples was not disturbed by the samples that contained

missing and below detection limit values.  

PMF ANALYSIS OF ATOFMS DATA

In addition to completing the calibration modeling studies, we have applied PMF to the 

ATOFMS data from Fresno, CA to ascertain the ability to obtain source resolutions.  The

approach that was taken is to use the number of particles in each particle class during a given

sampling interval (sample) as the input to the PMF analysis.  As we began the study, we

recognized the need for an improved estimation of the uncertainties of the numbers of particles in

each particle class since the performance of PMF is critically dependent on those uncertainties

estimates.  To solve this problem we are developing a new approach using a bootstrapping

method [Efron, 1982].   
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Bootstrap Uncertainty Estimation

The bootstrap is a resampling method in which replicate data sets are produced by

sampling of the original data with replacement.  In this case, approximately 250,000 particles

were measured during the sampling program in Fresno.  Thus, a new sample of 2500,000 particles

is selected from the original data set such that some particles will be present multiple times and

some particles will be absent.   The particles are then parsed into their classes and into the time

sampling intervals so that a matrix of number of particles in each of 117 classes in each of the

sampling intervals are available.  Then the process is repeated to produce a second data set.  This

is repeated a large number of times (e.g. 100 replicate data sets).  Then the data set for the PMF

analysis would be the average number of particles in each class obtained by averaging the class

membership numbers for the 100 replicate samples.  The uncertainty is the standard deviation

associated with that average value.  From this process, we then have the values and uncertainties

needed as the input values to a PMF analysis.  

PMF Studies

In this study, the ATOFMS data were collected from Jan. 9, 2001 to Feb. 2, 2001 in

Fresno, CA.  Not only the positive ions but also the negative ions were provided in the ATOFMS

data, so the range of mass-to-charge (m/z) for this study was set as [-350, +350].  This means the

input of ART-2a is a 700 dimensional vector.  The total number of particles in this period is 509,

600.

Now the problem is how to classify such a great number of particles with ART-2a

networks.  In Fergenson et al. (2001), a total of 12, 479 particle samples were grouped into 12

cohorts which finally generated 12 samples for the calibration model.  Each cohort was classified

individually by ART-2a, but the weight matrix (cluster vectors) was preserved from one analysis

to the next.  Any particles that did not fit into the existing classes nucleated their own classes. The

feature of ART-2a network that ART networks can create new class without disturbing the

existing classes permit this procedure to function, but in term of system completeness, it would be

better to classify all of the particles at the same time.  Thus, in this study, 509, 600 particles were

classified at the same time.  The vigilance of ART-2a is the key parameter to control the
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classification results.  The bigger it is, the more the classes are generated.  In the initial

experiments, some of the clustered centers of vigilance=0.6 were very similar, which means 0.6

may be too large.  The vigilance was then set to 0.4 and a total of 559 classes were created. 

However, most of 559 classes just contained a very few particles, so only 37 classes were retained

for further analysis based on three rules: 1) the selected 37 classes were the highest with respect

to the particle masses of all classes, 2) the selected 37 accounted for over 90% of the total particle

mass, and 3) each of the rest 522 classes accounted for less than 1% of the total particle mass.

The classification results were used to estimate the particle number concentration or mass

concentration of each class in each time period.  The time interval for each PMF sample was set

as one hour, thus there were 600 (24 hours/day * 25 days) time periods.  In this study, the mass

concentrations generated more reliable results of the PMF model than the particle number

concentrations.  Detection efficiency is the key to the accurate estimation.  The ATOFMS

instruments do not detect particles of all aerodynamic diameters equally.  Larger particles are

detected with a higher efficiency than smaller particles, so a scaling equation was applied to relate

the particle detection efficiency to the aerodynamic diameter of a particle [Fergenson et al., 2001]. 

The detection efficiency as a function of particle size can be expressed as

(13)

where N is the number of particles in a given volume of air per particle observed by the ATOFMS

ain that volume, D  is the aerodynamic diameter in micrometer of the particle, and " and $ are the

parameters.  In this case, the initial values of " and $ were taken to be 4999 and –3.236,

respectively [Allen, et al, 2000].  The physical diameter for calculating the particle mass was

estimated from the aerodynamic diameter by assuming the spherical particle with a density of 1.3

g.cm  [Allen, et al, 2000].  -3

The samples (inputs) for the PMF model were generated as below.  In order to ensure the

statistical reliability of the clustering results, among 600 time periods, those that contained less

than 400 particles were excluded from analysis. Thus, 462 time periods were retained for analysis

and the input of the PMF model was a 462 (samples) * 37 (classes) mass concentration matrix.   
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Now the problem is how to estimate the uncertainties of these calculated mass

concentrations.  In this study, bootstrapping was applied to estimate the uncertainties.  However,

the particle numbers in some periods for some classes are less than 10, so it is almost impossible

to pick up the particles of these periods from the total 509, 600 particles by bootstrapping. 

Therefore, the values for these periods in the bootstrapped mass concentration matrix were zero

or very close to zero, which influenced the PMF results considerably.  For the convenience in

discussion, this kind of period is called “abnormal” period.  Finally, the estimated mass

concentrations and uncertainties using bootstrapping were retained for the “normal” periods while

those for the “abnormal” periods were replaced with the directly calculated mass concentrations. 

The uncertainties for the “abnormal” periods were 15% of the corresponding mass

concentrations. 

The positive ion spectra of centroid of the 37 particle classes are shown in Figures 24 -27

and the negative ion spectra are given in Figures 28 - 31.  These cluster centroid spectra denote

different types of particles emitted by the various sources.   It can be seen that there may be no

observable positive ions for several of the particle types.   We need to consult with Professor

Prather with respect to the interpretation of these spectra and as of this time, we have not had

time to do so.  

As for the PMF model, one of the keys to ensuring the model effect is to determine the

number of factors.  In this study, different numbers of factors varying from 6 to 21 were tried. 

The Q value showed a change in slope at 18 factors.  In addition, the 18 factor Q is close to the

theoretical value (462*37).   Figure 32 shows the distribution of the scaled residuals for the

identified classes.  For almost all of the classes, the distributions are symmetric with acceptably

small values.  Therefore, it appears that 18 factors provides a reasonable solution.  The

corresponding profiles are shown in Figures 33-34 and the contributions in Figures 35-36.  

In the profile plots, most of 18 factors are represented by one dominant class.  For

example, factor 2 is represented by class 10.  In general speaking, each class obtained by ART-2a

corresponds to one source, for example, sea salt, gasoline emission and so on.  Therefore the

factor which has more than 1 dominant classes may mean that the dominant classes are very

similar or co-existing.  For example, the positive ion spectra of classes 7 and 15 in factor 1 are
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very similar, so are classes 1 and 3 in factor 3 and classes 6 and 7 in factor 12.

In the contribution plots, most factors show distinct features, but the contributions of

factors 4 and 5, 11 and 12, and 17 and 18 are very similar.  The possible reasons are the factors

represented by these classes can be integrated or may have the same wind direction effect.  

We are working on interpreting the obtained classes to make sure all the classes have

reasonable explanation.  After that, it can be easier to determine the proper number of factors and

more advance techniques of PMF model like rotation by “fpeak” and pulling down by “fkey” can

be applied.  Then more reasonable PMF results will be presented.
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Figure 24.  The positive ion spectra for classes 1 – 10.
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Figure 25.  The positive ion spectra for classes 11 – 20
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Figure 26.  The positive ion spectra for classes 21 – 30
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Figure 27.  The positive ion spectra for classes 31 – 37
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Figure 28.  The negative ion spectra for classes 1 to 10.
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Figure 29.  The negative ion spectra for classes 11 - 20.
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Figure 30.  The negative ion spectra for classes 21 - 30.
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Figure 31.  The negative ion spectra for classes 31 - 37.
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Figure 32.  Scaled residuals for each of the 37 input classes.
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Figure 33.  Profiles for sources 1 to 10 for the Fresno ATOFMS data.
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Figure 34.  Profiles for sources 11 - 18 for the Fresno ATOFMS data.
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Figure 35.   Time series of contributions for sources 1 to 10 for the Fresno ATOFMS data. 
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Figure 36.  Time series of contributions for sources 11to 18 for Fresno ATOFMS data.
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